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It is shown that if the direction of the force acting on a body differs from that of 
the velocity of the oncoming stream, logarithmic factors appear in the asymptotic 

formula for velocity. A formula is derived for the force , which can be taken as 
the extension of the known Joukowsky theorem to the case of three-dimensional 

flow of viscous fluid past a body. 

1. Statement of the problem, The flow of a stationary stream of viscous 
fluid past a body B of finite dimensions is considered. It is assumed that the boundary 
3’ of body B satisfies Liapunov’s conditions. Let ZL = (or, u2, us) be the dimension- 

less velocity vector, p the dimensionless pressure, 21 the Reynolds number, and .1: = 

0% 22, xa) E R3 and G = R3 \ B. 
The flow of a viscous incompressible fluid is defined by the system of NavierStokes 

equations 
(1.1) 

The recurrent subscripts indicate summation from unity to three. The boundary condi- 

tions are 
(1.2) 

where R = 1 ,z 1 and 6i j is the Kronecker delta. 

It is shown in cl] that any solution of the boundary value problem (1. l), (1.2) ( *) 
which has a finite Dirichlet integral (**) 

(1.3) 

satisfy condition 
IU-&j =0(K-“) (R-co) 

for cz > 1J2, according to Finn, they are “physically acceptable” [S]. For physically 
acceptable solutions Finn obtained [S] the asymptotic formula 

uh (a$ = u,~ + aiHi,(z) + 0 (R+") (R + co, IS = I, 2, 3) (1.4) 

where a = 2hF, F is the dimensionless vector of force acting on the body B, e is an 
arbitrarily small positive number, and H (X) is the matrix of fundamental solutions of 

*) In [l] the boundary condition along the body are presented in a more general form. 
**) Existence of such solutions is proved in @ - 71. 
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the Oseen system of equations 
8H.. 

AHij - 2h ~ - 2h az23 - - - $6 (5 - y) (~=1,2,3) (1.5) 
I 1 

dHik / ax, = 0 
A refinement of the asymptotic expansion (1.4) obtained by taking into account the non- 
linear terms of the NavierStokes equations is presented in [9], where it is assumed that 
the direction of the vector of force F is the same as that of the oncoming stream u,. 

On this assumption 
aHki ZL~ (2) = ~rnk + UNHIP (x) + aij- azj (x) + 0 lP” (R - x1 f- I)-“‘] (1.6) 

(II - c0) 
where aij are certain constants and k = 1, 2, 3. 

A refinement of formula (1.4) is obtained below without the assumption about collin- 
earity of vectors U, and F. The formula for the force acting on the body B is also 
derived. In the latter formula the force is expressed in terms of the integral over a sphere 
of a fairly large radius whose center lies inside B, and an estimate is made of the resid- 
ual term. This result represents an extension of the Joukowsky theorem to the case of 

stationary flow of a viscous fluid stream past a smooth body. 

Extension of the Joukowsky theorem to the case of plane flow of a viscous fluid was 
considered in [ 10 - 121. 

2. On the arymptotic behavior of velocity. In[9] the followingfor- 
mula 

where 

ZLi (5) = U,i + a,H, (5) + ajh_ 2 ,i (2) $ Idi (X; u’, v’) + 

0 [R-’ (R - lcl + I)-“’ log3 R] 

I& (x; u’, u’) = - 2h 

! 

W.. 
u.‘u ‘2 
J k au, dy (i = 1,2, 3), 21’ = aH (2.1) 

was derived. 
It can be shown (*) that, when F x u, = 0, then Iid (x; T’, v’) = 0 [R-s+’ 

(R - x1 + I)-‘1 an , consequently, formula (1.6) is valid in this case. If, however, d 
force F does not reduce to drag, the principal term of the asymptotic expansion of inte- 
gral (2.1) 0 (R+zln R) is readily obtained by restricting computations to the remain- 
der 0 (R-‘~2) . 

Let us now consider integral (2.1) for F X U, # 0. The fundamental solution of 
the Oseen system of equations (1.5) can be presented in the form 

Hij = 6ijAD - E (i, i = 1, 2, 3) 
1 3 

f_2hazcD=__ 1 Yj -“j 

3 
&cl axj 43t IY-;cI 

*) See K.I.Babenko and M. M. Vasil’ev, Asymptotic behavior bf the solution 
of the problem of viscous fluid flow around a finite body. Preprint IPM AN SSSR, dep. 
N*4590-72, 1971. 



We have the following estimates: 

jHij(X)I < CR-’ [S (x) + 11-l 

IdHi) / 6’sk 1 < CR-?‘2 Is (x) + 1 ]-“;e (k = 1,2,3) 

from which follows that 
a e-““(x) 

li;s’=- c 
1 - s,, z,@,” 

/tn/f ----x--- i - (a&z + &Qi) + a@‘] + Ii 

0 (R-32 [c (5) + l]-‘,“f 

These formulas show that the integral (2.1) is the sum of integrals of the form 

(2.2) 

where 

f (?I) = rm f,, Is (y)l lwkt (9) sin241z-m (2.4) 

lfZ = 0.1,2; k,E=1.2 

1 fm (4 1 < c (s + lY4 (2.5) 

( &’ (//) 1 < Cr--!‘e [S (q) + I]-‘lp, wkl (cp) = coSGIktSU cp Sin”zk”“lT (2.6) 

where r, 6 , cp are spherical coordinates and W (x) is a continuously differentiable 

function for z -+ 0 which satisfies conditions 

] w (5) [ < CPc’ [S(f) 4 1 IF (2.7) 

I I 
z(x) < CR-2-S~i’Z [s (‘-c) + l]-2ts1i’2 (i = I, 2, 3) (2.8) 

Let B c d = {?/ : / 9 1 < I}. We represent the region of integration G in the form 
of combined regions d n G and II, = R3 \ d. By virtue of estimate (2.2) for R -+ 
co the integral over region d fj G is 0 (R-5) . We decompose D, into regions 

D, = {!y : 1 < jr/l < R,} (R, ==hR, 11 = const, 0 <h. < ‘Iq) 

D,=h::ly-+GRoh Ds=Do\fDxUDJ 

and denote the integrals over these regions by II, f, and 1s) respectively. 

Since Vy E? D,, 1 z - y 1 > R - 1 ?/I :a R (1 - fz) , hence 

and, consequently, 
II = \ f(y) lV(z - y) dy _I- 0 (P) 

i), 
Let us consider the integral 
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We introduce the notation 

Using formula (2.4) for m = 0, 1, 2 , we obtain 

R,o m 

f,,, (s) s2+ ds + 0 (1) = 
1 0 

2’-‘% \ $1 f, (s) s2-“’ ds + 0 (1) 

1 0 
Thus 

1 f (y) dy = A1nX-t O(1) 

A = 22-1nQ r fm (s) s2-mds (2.9) 
0 

Let us now estimate the integral 

il = j, [w (J: - Y) - w (x)] f(y) dy = ( (y .grad W(E)) f (y) dy 
I), 

g=z- Sy(O<6<1) 

Since 1 E 1 > 1 L 1 - 6[y1>(1 -6h)R, hence 

I Yl I 
R’!Z [s (5) + IIS” 

+ 1 !I2 1 + 1 y3 1 
[s (4) + 1 I” 

f(y) dy 

Estimate 
I f M I < c I Y I-” 1s (y) + 1l-2 

is valid for the function f (y) . Using this estimate and passing to spherical coordinates, 
we obtain 

l~~l~C(R-“~~dr[RS’ikdrl+ 3 (~(I-cosB)+I)-~~~~~~B]+ 
1 0 R-?'2 

$&. rRT”’ iPd6 + 5 (r(1 - cos S) + I)-2 sin2 6d6 
1 0 R-V. 

which implies that 

Passing to the estimate of the integral I,, we note that v Y E D,, 1 y 1 > CR. Hence 
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11% I< C1R-2 @‘dry [r (I - COS 6) + 1]-',"Sin 61-Jfi < CRe3~~ 

For estimating 1s we use’the ineluality 1 z - y I> C 1 y 1, VY E D,, 

I IS I< Cl 1 r-3’2dr[ [r (1 - COS 6) $ 11m2 sin 6dO < CReJ” 
HO 0 

Combining the derived estimates, we obtain the following lemma. 
Lemma. When conditions (2.4) - (2.8) are satisfied, for the integral (2.3) we have 

formula 
I(x) =AW(z)lnR+O(R+p) (R+~) 

where A is calculated by formula (2.9). Setting in formula (2.2) 

we obtain on the basis of this lemma the following theorem. 
Theorem 1, If surface S of body B satisfies Liapunov’s conditions, then for sol- 

ving the boundary value problem (1. l), (1.2) with a finite Dirichlet integral (1.3) we 

have formula 8H.. 
ui (x) = umi + akHjk (x) + & $ (x) In R + 0 (R-“) 

k 
(i = I, 2, 3) 

Coefficients ljr are readily calculated with the use of formula (2.9). 

3. The force acting on the body, The force acting on body B in a sta- 
tionary stream of viscous fluid is determined in dimensionless form by formula 

Fi=_- 1 a2rj 

5[ ( 
2h a.E, + 2) - 6jkp] nk da (i = 1, 2, 3) 

3 

where n is the unit vector of the inward normal to surface ,$ . The expression for this 
force can be represented according to [13] in the form 

(3.1) 

where Z is a sphere of a reasonably large radius R with its center lying inside B, and 
n is the unit vector of the outward normal to surface E. Using the velocity and pressure 
asymptotics and estimates of velocity derivatives it is possible to separate in formula 
(3.1) the principal terms and estimate the remainder. 

It is shown in [9] that 1 duj / 8~~ 1 < CR-% [S (z) + I]-WE. Hence 

Let v = u - u,. Then 

F = - \ [pn + v (u,, on)] ds + 0 (I?-“‘) (3.2) 
2: 

since 

s umjumknkd~ = 0, s u,jv,n,da = 0 
r. c 
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x 

IS vjvknkds 
x I 1 <Cc, [R(l -COST)+ l]-2sin6d6<CR-1 

0 

It follows from formula (3.2) that 

F= - !@+.~a: . v) nds + u, x I- + 0 (R+), r=~(?zXv)& (3.3) 
c c 

The second term in formula (3.3) defines the component of force normal to the direc- 
tion of the oncoming stream and is of a form similar to the lift in the Joukowsky theorem. 

Let us transform the first term in (3.3) 

x = - s (p + VI) nds 
c 

and show that it provides the principal term of drag. We use integral expressions for velo- 

city and pressure (S, is the boundary of region D,) 

211 = us1 + VI, P = Ps + P 

V sl = - ) 

Ps = - 

v, = - 2h ~vivk~dy 
G k 

(3.5) 

(3.6) 

(3.7) 

D,={y:ly--“l<l} 
Finn had shown [8] that estimates 

I FJ (4 I < ( ;;:2-2:un;~r;1; R-l”+Y 
I 

are valid for the quantity defined by (3.7) if p < y (6 is the angle between vector J: 
and axis xi). It follows from this that 

s ’ Pnds = 0 (R-‘~~+‘) 
z 

where e is an arbitrarily small positive number. 

K. I. iiabenko and the author of this paper had proved ( *) the theorem which yields an 
estimate of the integral of the convolution type. Applying this theorem to the integral 
(3.6) we obtain 

I VI I 
and, consequently, - 

< CR -‘,‘p log2 R [s (x) + I] -1 

*) See footnote on page 11. 
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Thus 

Formulas (3.4) and (3.5) may be written as 

(3.8) 

U,l (x) == - 
” “Vj I( s= - .‘i,l?nj) NljdS -t U {R-' IS (~1 + I I-“: 

ps (x) = - 8 (2 - 2Apnjj qjds i_ 0 (R-3) 

Substituting these expressions into formula (3.8) and using the asymptotic expansions 

fflj = & 
0 {R- [s (ix) + 11-l) 

4j = - & + 0 (R-3) 

it is possible to show that X, = 0 (I?-‘iz+E), X3 = 0 (R-*GE), and, consequently, 

X = - el s (p, + vslf n&s + 0 (R-I,““) 
c 

where e, is the unit vector directed along the x,-axis. The last formula shows that for 

R -+ 00 the direction of the principal term of vector X is the same as that of the on- 

coming stream velocity. 
In this manner proof is given of the following theorem which is presented here in 

dimensional quantities, 

Theorem 2. Let the flow past body 3 with boundary S satisfying Liapunov’s 

conditions be determined by the solution of the boundary value problem (1. l), (1.2). 
The drag is then determined by formula 

X = - el 1 (p + pu, I 0) n&s + G (R-‘,““) 
x 

where p is the fluid density, and the sum of lift and side forces is determined by formula 

Y = pu, x r -/- 0 (??-‘,‘2+“E) (3.9) 

Expressions for forces in [ 131 are given in terms of integrals over the control surface, 
however without rigorous proof and estimate of the remainder term. At the limit K -+ 
00 formula (3.9) is the same as the corresponding formula in [13]. 

In concluding the author expresses his appreciation to K. I. Babenko for guidance in 

this work. 
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The hypersonic flow past a wing profile subjected to lift is considered. Effects of 

viscosity anf thermal conductivity in the region of flow outside the trail are neg- 
lected. An analogy is formulated which makes it possible to determine the velo- 
city field by solving the problem of “directional” explosion in which not only en- 
ergy but, also, momentum are imparted to gas. Motion within the viscous trail is 
specified by two terms of the asymptotic expansion of the solution of Navier-Stokes 
equations. 

1. The outer region, Let us consider the hypersonic flow past a wing of infi- 
nite span. We denote the density of gas in the oncoming stream by pm and by ~1, its 
velocity in the direction of the z-axis of the Cartesian system of coordinates X?j. We 
assume that upstream of the bow shock wave shown in Fig. 1 the pressure y, = 0 and, 
consequently, the Mach number M, = 00. The gas is assumed to be perfect, i. e. to 
conform to the equation of state for such gas (the Clapeyron law) and that both specific 


